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()h,icclive:

The objective of the Chief project is to provide an i.tegrated simulation environment for
studying and evaluating various issues in designing parallel systems, including machine

architectures, parallc]izillg compiler teclmiques, and parallel algorithms.

The objective of the Della project is to provide a facility to allow rapid prototyping of

parallelizing compilers that ca. target toward diffcrent machitm architectures.
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_l_ljor Aceomplishmenls

1. Developed a program instrunaentation and simulation facility, MaxPar, that can measure

the maximum inherent parallelism in application programs and also can measure the

effectiveness of various parallelizing compiler techniques.

2. Developed parallel simulation kernels on the Alliant FX/8 parallel computer based on a

conservative (Chandy-Misn0 a11d optimislic (Time Warp) event-driven' models.

3. l)cveloped a p;irallel simulalicm kernel, PARSIM, on the AllianI FX/8 parallel computer,

that employs a hybrid time- and event-driven modcl to speed tip simulations. PARSIM will
also run on uniprocessor machines such as high-perfom_ance workstations.

Designed and implemented a high-level language CARI, (Computer Architecture Research

Language), which is based vpon C and is used for writing simulators.

DevelopEd preprocessors to translate CARL into C and C++ code. The resulting code can

be compiled with a standard compiler to allow the simulations to be carried out either on a

workstation or on a parallel computer such as the Alliant FX/8.

Developed a high-level graphical interface to assist in simulalor configuration and to run
suites of benchmark executions on the Clfief simulalors.

Developed a bitmapped graphical inlerface for PARSIM, PARSIM-UI, that allows a user to
display and control the state of the simulation. Its operation may be customized with an

interpreted language to display simulation-specific information according to user

preferences.

Developed a dala display tool fhal plols the resulls of simulalion runs on a bilmapped
workstation.

ImplemEnted two pilot parallel simulators on the AIliant FX/8. They can run a FORTRAN

program suite through a parallelizing compiler to generate parallel traces. In one case, the

resulting traces drive the simulation of a shared-memory multiprocessor system with a

multistage shuffle-exchange network. In lhe other case, the traces drive the simulation of

an eight-processor system similar Io an FX/8 system.
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I. Chief Projec! Overview

Chief is a parallel simulati_m environment fox studying parallel systems.
haaic slructure.

Figure 1 shows its
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Figure I - Chief Project Overview

Parallel systems are studicd by creating simulators and driving those simulators with

benchmark programs. These benchmark programs are restructured according to the architecture

,}f the target system, and parallel traces are created.

A simulator for the target system is constructed from the architecture specification. The
c_re of the simulator is a simulation kernel (based upon one of three paradigms). The simulator

includes a powerful bitmapped window imcrface that provides the user with a complete view of

_tnd control over the execution. The user can vary a set of parameters to the simulated system.

lhc simulator is driven by the parallel traces described above.

Statistics are collected during simulation runs. The Chief environment provides tools to

examine these statistics and plot their values against the simulation parameters.

A separate tool, MaxPar, can be used to instrument programs to measure the maximum

i_herent parallelism within them. The results MaxPar generates are an upper bound on the

:_vailahle parallelism, and can bc used to ewduate the effectiveness of the restructuring compilers

_l_(l simulated system.
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2. Simulalion Facililies

2.1. Execution-driven Simulation: MaxPar

MaxPar is an execution-drive_ parallelism proiiling and extraction facility. It instruments
an application (such as a Perfect Club ! benchmark) to collect statistics based upon the actual

execration of the program. It can determine the inhe,ent maximum parallelism of an application
pr_gram and the optimal parallelism of the program with system constraints (such as the number
_._fprocessors, storage-related data depemtcnces, and the synchronization overhead). MaxPar can

h_c'atc the bottlenecks in tile program. Fiscally, MaxPar can generate parallel execution traces for

_l_cprogram.

MaxPar instrumcnts an application program to record timing and scheduling infonnation

f-t,Feach data object, where a data object is eithcr a scalar variable or an array element. To store
thi_ irffonnation, MaxPar associates additional variables, called shadow variables, with each data

object. For each variable X, tile read shadow trX records tile last time X was read and tile write

sh'adt_w twX records tile last time X was written. Given the operation

C=A_pB

whc_e C, A, and B cal_ be scalar variables or ar,ay elements, and the op can be any arithmetic or

h-,gical operator, then the equations used to update tile shadows are:

twC = co,zlmte_time(op) + max(twC, trC, twA, twB)
trA = max(trA, twC)

trB = max(trB, twC)

When a data object is read, its write shadow is checked to determine the earliest possible
time ftgr tile read operation to proceed. The read can proceed only after the previous write has

c_,mpleted. If the rcad and write are flom different processors, the overhead resulting from data

synchronization is compt, ted. The read shadow is then updated to that time. When a data object

i_ written, both its ,cad shadow and its write shadow are checked to compute correct timing and

t_ perform any necessary synchronization.

MaxPar also takes other system features into consideration. The number of processors in

the target system may be specified as a tinite number or may be infinite. Parallelism may be

_11easured at one of four levels of granularity: operation-level, statement-level, loop-level, or

st_bprogram-level. MaxPar cau also take into account scheduling schemes and the

synchronization overhead for data synchronization and barrier synchronization. The anti- and

ot_tput-depende_ces of a program can be eliminated by an optional dynamic storage allocation
scheme. MaxPar can compute the amount of additional storage required to achieve this "pure"

data-flow type of execution.

MaxPar instruments the application program, producing a new source program. This is

cc, nlpiled on the host machine, linked with runtime libraries, and exect, ted. The program

pFOdUces computationally correct answers. In addition, it produces an execution profile by
cotmtirag the number of operations that can be executed at each time instance. A parallel trace

cat_ also be generated. Figure 2 shows the profile of a 512-point fast Fourier transform. The

NiNe "peaks" represent tile high parallelism present at tile start of each phase of the FFT. The
I_lot does not include the first part of the program, which performs initialization. The parallelism

in this example is measured at tile loop level with an unlimited number of processors and with

m_ overhead (hJe to schcdtlling alld synchronization.
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Figure 2- MaxPar's Execution Profile of a 512-point FFT

2.2. l'nrallel Simulnlion Kernels

A Chief simulation consists of a group of modules interconnected by nets. A module

etwapsulates some function, presenting it to the "outside world" through a set of inputs and
t_Ltlputs. The inputs and outputs of the modules within a system are connected together by nets.

The inputs and outptnts may be scalars or arrays (with a maximum of three dimensions), the size

c_t which can be specified during runlime configuralion. Modules may be implemented directly
a,; a set of low-level functions that directly read values from input nets and write values to output

nets. Alternatively, modules may be constructcd from other rnodules. The simulation is

in_plemented as a hierarchy of modules. The root of the module hierarchy is the simulation

itxclf. Many commot_ low-level modules will be provided in a simulation library.

In order to reduce the time required to simulate large parallel systems, Chief provides three

different parallel discrete event simulation (PDES) kernels. Simulators built with these kernels

';hare a common user interface, and a single language is used to write code for all three
,;imulation paradigms.

The PDES kernels include a conservative approach (based upon the work of Chandy and

Xlisra2), an optimistic approach (based upon the "l'irne Warp 3 technique), and a approach that

on,ploys a hybrid of time-driven and evcnt-drivcn techniques (called PARSIM, for parallel

simtdator). It is well known that the performance of these PDES approaches is problem- and
',q_l_lication-dependent. By providing all three simulation kernels with a single user interface and

,;imulation language, Chief gives users the ability to write one simulator specification and select

one of the three approaches at compile time. All three approaches are currently implemented on

an Alliant FX/8 system. In addition, PARS1M is also implemented on uniprocessor Sun

Nl icrosystems machines.

The user describes each simulation component and the intereonnection of components that

I,_r_as the system. The component definitions arc written in the language CARL (described in

_;cction 3). Two kinds of components can be dcfincd: bchavioral components and hierarchical



' _6_

coml_onents. Behavioral components are descrihed by dclining their local state, their inputs and
ouputs, tile actions that should be taken when one or more of their inputs change, and the

initialization that should be performed when the simulation starts or is re-executed. Hierarchical

components are described by defining tile subcomponents that constitute them and the manner in

which subcomponents are connected to one another and to the inputs and outputs of the

hierarchical component.

A Chief simulator is constructed from a collection of these component definitions. The

const_uctiort stage comprises two independent phases: tile translation phase and the code

generation phase. During the translation phase, tile component definitions are translated into C
'_tructures (for PARSIM) or C++ classes (for Chandy-Misra and Time Warp) that define the

v:_rious types of the particip:_ting components. The data members of each C structure or C++

cl:_ss represdnt the state associated with the respective components in the simulation.

For Chandy-Misra and Time Warp simulations, tile function members of the C++ class

constitute the set of routines needed to simulate tile respective components. The system is

represented as a collcction of logical processes, each of which simulates a component and
communicates with other components. Each logical process is the set of member functions

dclined in its class. An inlportant goal of tile construction stage is to to minimize the

communication overheard and maximize the potential parallelism in the execution of the
simuhnion. To achieve this goal, we partition the logical processes into sets and assign the

simul:uion of each of thesc sets to a processor. This assignment is achieved by generating

_q_l)ropriate code to be executed by e_ch physical process.

For PARSINI simulations, the structure definitions are created in a header file and the

executable routines that simulate the component are created in a separate code file. The code file

is compiled along with tile headcr files of its own component and any inchtded subcomponents

tr, create an executable module. A complete simulation consists of a linked set of of simulation
m_dulcs.

The execution of the simulation is the final stage of the simulation process. The Chandy-

_lisra and Time Warp paradigms are based on the exchange of messages to convey infonnation
from one component to another. Clmndy-Misra also incorporates a means for avoiding

deadlock. The machine on which we are developing this tool (an Alliant) is a shared memory

m_chine; therefore, instead of using actual messages we use shared memory to convey

i,,formation _md (i,l the Chandy-Misra case) to avoid deadlock. By doing so we reduce the cost

associated with the use of messages. Each component, for which there are events to simulate is

extracted from the ready queue maintained by each physical process, and is simulated on the

outstanding events. When there are no more events to simulate it is blocked waiting for new

events (messages) to arrive, and control is transferred to another ready logical process. This

cycle is repeated until _lll componenls have been simulated up to a certain (virtual) time, which

has been defined by the user as the End of the_simulation_time.

PARSIM employs a combination of the time-driven and event-driven approaches to
simulation. PARSIM maintains a system event queue that is a time-ordered list of event lists.
[!_ch sublist contains events that occur at tile same simulation time. PARSIM also maintains

event queues for each of the nets affected by clock-induced events.

PARSIM executes events in groups. It dequeues the first list of events from the system
event list. Then, in parallel, it evaluates these events, resulting in new values being assigned to

,_ets Each component that is affected by the change in the nets may specify an "action routine"

that updates that components status. PARSIM makes a list of all of the action routines that must

bc processed. After all of the nets have been updated, all of the action routines are evaluated in

pmallcl. These routines may, in turn, post additional events to the global event queue.
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3. CARL- Computer A rchileclure Research Lang.age

The Chief project providcs three different paths by which simulators can be constructed,

according to tire PARSIM, Chandy-Misra, and Time Warp paradigms, respectively. Although
the simulation techniques are different, in all three cases the simulated system is specified as a
ct_mnected set of hierarchically-defined components.

Components are written if1 a semi-absmlct hmguage called CARL. The use of this

kmguage frees the component designer from the need to know the low-level details of the

various implementations. More importantly, component definitions written in CARL can be
incorpormed into any of the Chief simulators simply by using an appropriate preprocessor to

convert CARL code to C (for PARSIM) or C++ (for Chandy-Misra and Time Warp).

A component description in CARL consists of sections of C-like code headed by CARL
keywords. The keywords are CObIPTYPE, II, IPUTS, OUTPUTS, SUBCObIPON'ENTS, VAR,

ACTION, INIT, STRUCTURE, BEGIN, and END. The COMPTYPE, INIT, STRUCTUI%E,

BEGIN-END sectiol]s conlain execulablc statements modelling a component's behavior and

specifying its internal structure.

#define ADD 0

#define SUB 1

_define AND 2

#define OR 3

COMPTYPE Alul6(speed)

int speed;

INPUTS

short in[2]: alu eval;

char op: alu eval;

OUTPUTS

short sum;

VAR

int Speed;

ACTION alu eval

switch (op) {

case ADD:

sum = in[0] + in[1]

break;,

case SUB:

sum = in[0] - in[1]

break;

case AND:

8urn = in[O_ & in[l_

break;

case OR:

after Speed;

after Speed;

after Speed;

sum = in[0] [ in[ll after Speed;

break;

BEGIN

Speed = speed;

END

Figure 3 ..... CARI_ definition of a 16-bit ALU

Figure 3 shows the CARl, dcli,fition of a simple AIIJ, capable of performing four

t,pcrations upon its two 16-bit inputs. The component, whose lype is Alul6, has one

i_aramctcr: the dclay between a change to its inpuls and a new value on its outputs:
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The Chief projecti,cludcs two preprocessors.F'SPP,the PARSIM Preprocessor, converts
CARt, into C. PSPP is a compiled program that uses the Iools "lex" and "yacc" to read CARL

programs. It generates two files: a header file that defines PARSIM data structures and a C code
file that contains module creation, connection, initialization, and action routines. The host

machine's C compiler will convert the code files into object modules that can be linked with the
PARSIM runtime libraries and user imerface to form a PARSIM simulator.

C2CMTW, the CARL "2" Chandy-Misra/l'ime Warp preprocessor, converts CARL into

C++. C2CMTW, like PSPP, is an executable program. It generates two files: a header file that

dctines C++ classes for each component type and a C++ code file that contains the definitions of
the class member functions. The host machine's C++ compiler will convert these files into

object modules that can be linked with either the Chandy-Misra runtime libraries or the

Time Warp libraries to create a simulator.

4. [Jl-- PARSIM User lnlerface

The PARSIM user interface (PARSIM-UI, or simply UI) displays information in bitmapped

windows using the X II window system. It provides control facilities for starting, stopping,
c¢mtinuing, and breakpointing simtflation runs. Nets can be viewed graphically. By creating

several windows, the user can interact with the simulation from muhiple contexts.

The core of PARSIM-U1 is an execution engine that parses and executes commands written
in a simple language. The graphical interface "wrapper" accepts input in the form of menu

selections, button presses, etc. and transforms it into commands that are interpreted by the

engine. The user-interface language is also directly :tvailable, so that the user can customize his

¢.wher debugging sessions as necessary.

PARSIM-UI can directly access objects i, the simulation system: components, inputs,

uutputs, and nets. It also provides and operates upon sinmlator variables. Variables may contain

integer, floating-point, or string values, or may contain one of three special typed values: error,
high-in_pedance, and unknown. Their type is dynamic --an assignment to the variable sets the

type as well as the value. "I'be value of an uninitialized variable is the integer zero.

A set of operators combines components, nets, variables, and literal constants into more

complex expressions. An expression may bc used whenever the PARSIM user interface expects
a value. In particular, an expression may be used withit_ a component or net array subscript.

l:utwtion calls may also appear within expressio,s. They are called using the syntax

function_name (args )

_here[unction_nmne is the ftJtlctioo name afKI _lrgs is a comma-separated list of expressions that

represer_t the arguments to the function. The nttmber and type of arguments are function-
specific. PARSIM-UI provides a set of standard built-in functions, which provide access to the
_;imtflatior_ state. Users can define additional ftmctions.

The primary interface to PARS1M-U[ is graphical; however, in recognition of the fact that

text input is sometimes necessary, macros can be used to hid some of the programming-language

appearance flom the user. A set of built-in macros is provided. The user may define any
number of new macros and is flee to redefine the buih-in macros if he or she so desires.

The PARSIM-UI language provides primitives for grouping, iteration (wwr'r._),

conditionals ('rF), function definition, and macro definition. The syntax is vaguely similar to

Algol or C.

PARSIM-UI provides it powerful breakpoint facility. Breakpoint conditions are expressed

_s _n arithmetic e×pression and therefore may depend upon nets, constants, and variables. This

I+rcwidcs steal flexibility; for inslance, it is possible Io check if the currenlly-addressed register
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in a registerfile is zeroor if tile vahlesof two registersareequal. Whena breakpointcondition
is satisfieda secondexpression(thebreakpoint"action") is evaluated.Theactionmayinclude
stc,ppingsin'iulationafter thecurrentsimulationtimestep,but it neednotdo so. Otherpossible
actionsmight includeprintingamessage,updatingadisplay,or collectingstatisticsin acounter.

The user may display any subsetof the simulation state by defining one or more
_mt_Jdi,wla3's.An aulodisplay is a window that continuouslydisplays sets of expressions.
I:;ffcctively it is a snapshotof a user-specifiedsubset of the current simulation state.
Autodisplaysallow theuserto createviewsof collectionsof netsandto watchthemchangeas
0_c simulator executes. They are ttpdated each time 0rot the sim_tlator stops (e.g., due to a
breakpoint) and at other times as directed by the user or breakpoint definitions. The appearance

c,f ;l_ autodisplay window is primarily under the user's control.

The contents, format, and location of all ,'mtodisplay items are user-configurable. The fields

within an autodisl_lay can be inoved and resized using Ihe mouse.

PARSIM-UI can save any part of its user interface state to a file. Thus, tile definition of

one or more autodisplays, breakpoints, flmctions, macros, and/or variables can be preserved

from one simulation run to the next. This gives the PARSIM-UI user significant control over the

configuration of his or her environlnent and makes I'ARSIM-UI a powerful tool for debugging
:rod running simulations.

5. Parallel Trace Generation Faeililies

5. I. ()plinml Parallel Traces (MaxP'lr)

MaxPar can produce an optimal parallcl trace by instrumenting a program at the source

o_,de level with tracing instructions. The traces that arc generated when the program is executed

are optimal in the sense that they rctlect the best possible parallelism within a program;

therefore, they can provide an idealistic pcrfonuance upper bound for tile program. The

information in this trace is independent of the machine architecture and the parallelizing

compiler.

.4.2. Symbolic Parallel Traces (Parafrase)

Syrnbolic parallel traces are used for generic shared-memory systerns with an optional
vector processing unit in each processor. The set of traces generated can be targeted toward a

p:_rticular machine organization such as SIMD, MIMD, etc. It provides users with a good mix of

ze_llistic computer architecture characteristics, m_d also allows them to specify particular

characteristics of their own machines. For example, a user can specify the number of processors

in the system, tile scheduling scheme, the data layout in the shared memory, etc. The resulting

i_:uallel traces reflect the possible parallelism that can be obtained by a parallelizing compiler as

opposed to tile maximum parallelism that can be obtained using MaxPar.

Parafrase-based parallel trace generation consists of three steps:

I. Getterate program ipttermedirlte form. The syntax and the semantics of the intermediate
language resemble an assembly language for a vector multiprocessor. The output is

generated for each subroutine separately. An infinite number of symbolic registers is

assumed for the system.

2. Link and load modtdes fi)r execution. This resolves symbolic references, processes

parameter passing, lays out common blocks, determines which data is global and which is

local, and produces a load/nap.

3. LWCltle the load ttlodttles symbolically. This slop simuhltes parallel execution of the load

modules and produces time stamps for instructions accessing memory. The result is a
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nlemory reference trace that can be used to drive multiprocessor simulators created by tile
Chief tools.

5.3. Alliant FX/8 Traces

Alliant supplies an emulator for the FX/8. Programs are compiled with the parallel Alliant
Fortran or C compiler. The resulting object modules arc linked with runtime routines to create

cxecutables. These are then emulated to produce A llianl-specific memory reference traces. The

programs produce computationally corrcct resulls, and the traces are a very realistic reflection of

the program's parallel behavior. Ilowever, because the traces are machine-specific, they cannot
be made to accomodate a memory hierarchy or a contiguration consisting of more than eight

processors.

6. l)ata Visualization Tool

The Chief visualization tool plots data for display on a bitmapped workstation. The data is
collected from a suite of simulation runs in which simulation parameters are varied from run to

run. The data from each run is storcd into a file. A separate description file identifies all of the

data items. The visualization tool reads the dcscription tile and all of the data files. The user can

plot any data item against any simulation parameter while constraining tile values of other
simulation pararneters.

7. Top-Level Chief Environmeul

All of the Chief tools are assembled into a top-level bitmapped environment. The

environment guides the user through the creation of a simulator from a set of components stored

in a component library. More than one version of some components may be archived, so the

environment allows the user to view the ct,rrent set of components and select the desired version

for each one. Each component contains a set of parameters that control its behavior. The

environment extracts a complete list of parameters from the specified components and provides

mouse-driven tools that allow the user to specify ncw parameter values.

The environment provides a simple interface that allows the user to specify a set of

compiler parameters, compile a benchmark, and generate a trace file. The editing of compiler
parameters is similar to the editing of simulation parameters. In addition, the environment also

allows the user to invoke MaxPar to analyze the parallelism within the benchmark.

When instructed to build a simulator, Ihe environment will invoke the appropriate Chief

preprocessor for each component definition (written in CARL), will invoke the system compiler

t(_ create object files for all components, and will link those object files with the appropriate
kernel and user interface libraries. A sirnple command will execute the resulting simulator.

The power of tile Chief environment lies in its ability to execute a suite of compilation and

simulation runs while varying the input parameters. The user specifies a set of values for each

parameter, and the environment will automatically compile the benchmark to produce a trace
tile, build the simulator, and invoke the simulator with the trace file as input. The output from

each simulation run will be written to a separate file. The user can then use the Chief

visualization tool described above to display these rest, Its graphically.
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8. l'ilol Simulations

Two simulators have been developed to demonstrate the utility of tile Chief environment.

First, the simulations can be run in parallel, resulting in fast execution time. Furthermore, the

simulations are written in CARl,, which is extremely modular, allowing faster initial code
development. This allows component models to be replaced much more easily than in dedicated

simulation programs.

8.1. Cedar-like Syslem Simulalor

A simulator has been developed to simulate the Cedar global memory system 4'5. It consists

of models for the Omega networks, the global memories, and a simple processor. The simulator

is driven by traces of Fortran programs generated by Parafrase. It allows different system

cot_ligurations to be simulated by changing the size of the system and the size and configuration

of lhe network switches, aml by rei_lacing the swilch and memory component models to test,

e.g., di fferent internal buffering configurations.

The system model ix a simplification of Cedar, in that processors are not clustered as in

('cdar. Furthem_ore, the current processor modcl does not simulate the effects of caching or

cluster memory. Some of these effects can be accommodated by changing the way traces are

gathered by Parafrase. More advanccd processor models are also under development.

8.2. Cedar Ciusler Simulalor

A simulator has been dcvclopcd to simulate a Cedar cluster. It consists of models for the

cachcs, the cluster memory, and eight simple processors. Traces created by the Alliant FX]8
emulator drive tim simulation.
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Project Summary

The Delta Program Manipulation System

Gregory Jaxon David Padua Paul Petersen

Center for Supercomputing Research and Development
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Abstract

This report summarizes the status of the Delta Program Manipulation System [Pad89]
project at the expiration of its initial project development grant. Included are a review
of the project's objectives and surveys of the program manipulation tools developed, the
environmental software supporting Delta, and the compiler research projects in which
Delta has played a role. An appendix describes the Delta system in detail.

1 Objectives

FORTRAN 77 programs are portable to many computer architectures. But the program

characteristics that yield the best performance vary from machine to machine. The com-

mon goal of researchers in automatic restructuring is to capture and preserve the meaning

of a program while varying the program structures that most influence its speed and ef-

ficiency on different computer systems. Although a number of commercial and research

program restructurers have been written, the cost of exploring new techniques or optimiza-

tion strategies is still extremely high.

The Delta Program Manipulation System[Pad89] is an open system of tools and compo-

nents and a workbench environment for developing new compiler techniques in automatic

program restructuring. Included are: a FORTRAN parser; an extensive repertoire of opera-

tions and data structures common to vectorizing and parMlelizing compilers; and the tools

and methodology needed to generate and test new compilation methods and strategies. We

believe that this approach can reduce the cost of research and development for advanced

compilers in the same way that domain-specific languages (e.g. Mathematica) have reduced
the cost of problem solving in other technical fields.

Openness An 'open system' is one which exposes its component parts for modification,

replacement, or reuse in new contexts. Several factors contribute to the openness achieved
in Delta.

*This work was supported by tile National Aeronautics and Space Administration and the Defense Ad-
vanced Research Projects Administration under Grant No. NASA NCC 2-559. Part of this work was carried
out by James R.B. Davies.



* The implementationlanguage(SETL) is very high level. This means the amount of

text invested in any one design commitment tends to be small, and thus manageable.

• An 'applicative' programming methodology has been followed in which components

are relatively insensitive to the context in which they are used.

• The central data structures in Delta are labelled maps. Because they are self-docu-

menting and flexible, they are easy to use in new ways, or modify for new uses.

• Environmental software has made the SETL source of Delta 'content addressable'.

In the following sections we will describe parallelization and illustrate Delta's program

manipulation tools, then survey the environmental software supporting Delta and the com-

piler technology research at CSRD in which Delta is beginning to play a part. Appendix A
gives a detailed description of the Delta system.

2 Programs and Manipulations

Delta operates on FORTRAN77 programs. To make them tractable, they are represented

internally as abstract syntax trees that supress the le:dcal and syntactic quirks of FORTRAN.

In SETL, data objects can share storage under a discipline of'copy-on-write'. Each FORTRAN

program appears to be a separate SETL data object. Delta transformations take FORTRAN

programs as 'call-by-value' arguments and deliver revised programs as results. Memory

requirements do not multiply since only the few substructures which change need new

storage.

Internally, Delta breaks a program into its:

• Symbol table

• I/O format specifiers

• Imperative statements

• Applicative expressions

• Storage equivalences

• Initial data values

• Common storage layout

Each substructure collects and indexes one class of program components. The component

descriptions are collections of named attributes. Some attributes link components together

(by their names or indices) into semantic networks. Delta works by discovering and deriving
facts about the program's behavior when it is executed. Facts are added to the tree both

as new top level structure and as annotations to low level components.

An executing FORTRAN program produces a sequence of stores into memory cells, refer-

ences to stored values, and calculations creating new values. The program's text may refer

to one storage cell in many different ways. The cells of an array are identified by subscripts

which are integer arithmetic formulae. Symbolic algebra and Diophantine analysis can be

used to test whether two subscript formulae ever intersect. Where they do, the two uses of

that array may involve the same storage cell. Such a pair, where at least one storage action

is a write, forms a data dependence and requires that the two memory references occur
in their original order.

The sequencing of storage actions is captured in data dependence graphs, a control flow

graph, and a subroutine call graph. The graphs summarize how the parts of the program

cooperate to achieve its net result. These graphs are examined before most program changes
2



to verify that the transformedcodewill be e_luivalentto the original. As the programis
changed,thesegraphsareupdatedor regeneratedto reflectthe currentorganizationof the
program.Theincrementalcostto do this is smallbecauseoptimizingtransformationstend
to preserve most storage relationships.

Parallelism can be recognized in a sequential program as a pattern of data and control

independence. Parallelizing is the process of producing these patterns by modifying loop
structure, introducing auxiliary storage cells, and reorganizing calculations to avoid small

cycles of dependence which can only be supported by serial loops.

Today the Delta system includes sufficient preconditioning, analysis, and transformation

components to parallelize and restructure many example programs. It can permute the

nesting order of a collection of loops, distribute loops into vector form, or split them into

parallel and serial pieces. It can normalize them, stripmine them, or reverse their iteration

spaces. It recognizes scalar inductions carried by a single loop, scalar variables local to a

single loop, summations, and DOALLS.

In the next half year we will extend Delta's parallelization techniques by collecting

dependence cycle breakers: particular transforms, triggered by the appearance of a circular

path in the data or control dependence graph, and designed to break the cycle. Some of these

cycles are easily broken by recognizing which variables are loop invariant, linearly varying,

or localizable. Such properties of a loop are discovered by the preconditioning passes already

built for Delta and appear as annotations to the internal program representation for later

passes to use.

3 Environmental Support

3.1 SETL

For now, any serious user of Delta must become a SETL programmer. Fortunately most

programmers can intuit the basic principles of S_TL by imagining a cross between Algol

control constructs, Set Theory notation, and Lisp recursive data structures. A key to the

power of SETL is the flexibility of sets and tuples for representing data structure. It is

especially important for Delta programmers to understand maps. A map is a set of ordered

pairs (i.e. 2-tuples). SETL allows a map to be applied to an argument like a function; the

result is the second element of the ordered pair whose first element matches the argument.

For example, if we create a map from the first four integers to their names:

> number_to_name := {[l,"one"], [2,"_;wo"], [3,"three"], [4,"four"]};

then we can use this variable like a function:

> number_to_name (1) ;

"one" ;

If the argument is not in the domain of the map (i.e. the set of first elements of the ordered

pairs), the mapping operation returns 'OM'. If more than one ordered pair has the same

first element, then the map is referred to as multi-valued. A special form of the mapping
operation, using curly braces instead of parentheses, will return the set of all second elements

of ordered pairs in the map whose first element matches the argument:

3



> number_to_name := number_to_name ttnion {[1,"uno"]};

> number_to_name{ 1} ;

{"uno", "one"} ;

> number_to_name{2} ;

{"two"};

A mapping operation with parentheses is illegal for members of the domain with multiple

values. The test for this error occurs at runtime. The choice of which algorithm to use to

perform the mapping is a/so made at runtime. Very little of SETL'S syntax is devoted to

specifying implementation details. Runtime choices are expensive. They are avoidable in a

commercial restructurer, but are welcome in Delta because they reduce the amount of text

that must be changed to revise a design choice.

3.2 Interactive Delta

A typical Delta development session might start out as follows.

started and it reads all of the Delta source code:

shellX idelta

DELTA Program Manipulator Last update: Feb 14 16:09

(c) 1991, Board of Trustees, Univ. of Illinois (CSRD)

ISETL 2.0 Last updated on 89/12/12 at 13:18:09.

(c) Copyright 1987,1988,1989 Gary Levin

Enter !quit to exit.

First the interpreter is

Current GC memory = 50080, New Limit = 4000000

Current GC memory = 3996384, Limit = 4000000

> matmul := read_program("matmul.f");

> display_program(matmul);

SUBROUTINE MATMUL(A,B,C,N)

$2 DO I = I, N, I

$3 DO J = 1, N, 1

$4 X = 0.0

$5 DO K = I, N, 1

S7 X = X+B(I,K)*C(K,J)

$8 ENDDO

Sl0 A(I,J) = X

Sii ENDD0

S12 ENDD0

S13 RETURN

END

0M;

Function read_program invokes the Delta scanner (a separate program, written in C) on its

filename argument. The scanner produces a SETL data structure that completely describes

the program. Read_program loads this structure as a variable within the iSETL session,

annotates itwith itscontrol flow graph and variable cross re_rence, and returns the whole

4



package as its functional result. Here we assi'gned it to the variable 'matmul'. A call to

display_program lists out tlie executable statements of 'matmul' in fORTRAN form.

The '>' is an iSETL prompt; a statement typed here will execute and have its value

printed. The value of display_program was undefined, which SETL treats as a constant

called 'OM' (for Omega or omitted). %Ve can begin to examine matmul as a SETL map by

asking:

> domain (matmul) ;

{" statements", "init ial_statement", "f inal_stat ement",

"expression", "loop_info", "routine_type", "symtab"};

In more complex programs we might also see substructures for "common_blocks", "equi-

valences", and other FORTRAN features.

Compiler authors rely on utilityfunctions to abbreviate most dat_ accesses. For ex-

ample, one query function in Delta is called stmts_of_type. It returns a tuple of names of

statements of a given type, in the order that they appear in the program. If lexical order is

not important, the raw SETL needed to acquire the same subset is almost as brief:

> stmts_of_type (matmul, "DO") ;

["$2", "$3", "S5"] ;

> all_struts := matmul("statements") ;

> { stmt : attr = all_stmts(stmt) I attr("st")

{,"S2", "S5", "S3"};

= "DO" };

At the top level of compiler construction, transformation and analysis functions are

more common. Here we have composed many Delta steps into a 'precond[tioh' function,

which returns a heavily annotated version of its argument. We then apply an experimental

vectorizer to the annotated program and put the parallellzed result into a separate iSETL
variable called 'matmul_vector'.

> matmul_vector

$2 is a DOALL

$3 is a DOALL

$5 is a summation

:= tiny_vectorizer (precondition (matmul));

We have chosen to express parallelism as an annotation to a fundamentally serial program.

Preserving the sequential view of the program's semantics means that sequential analyses

are still applicable to the transformed program.

display_program (matmul_vector) ;

SUBROUTINE MATMUL (A, B,C, N)

$2 DO I = I, N, I {DOALL}

$3 DO 3 = I, N,11 {DOALL}

$4 X = 0.0

$5 DO K = 1, N, I {SUM}

$7 X = X+B(I,K)*C(K,J)

$8 ENDDO

SIO A(I,J) = X

Sii ENDDO



$12

$13

OM;

>

ENDDO

RETURN

END

print_graph(matmul_vector, "$5", OM) ;

Output Dependence with Direction [=, =, <] from S7126]: X to $7126]: X

Flow Dependence with Direction [=, =, <] from $7126]: X to $7127]: X

Antidependence with Direction [=, =, <] from $7127]: X to $7126]: X

OM;

On the other hand, most restructuring transformations also modify the serial program.

Changes to the lexical and control flow graphs are evident in the program display.

> display_program (stripmine (matmul_vector, "$3", 32)) ;

$3 stripmined into [$3, ST2]

SUBROUTINE MATMUL (A, B, C,N)

S2 DO I = I, N, i {DOALL}

SB DO J1 = i, N, 32 {DOALL}

ST2 DO J = Jl, MIN(N,31+J1), 1 {DOALL}

$4 X ,, 0.0

S5 DO K = 1, N, I {SUM}

$7 X = X+B(I,K)*C(K,J)

$8 ENDDO

SIO A(I,J) = X

ST3 ENDDO

S 11 ENDDO

S 12 ENDDO

S 13 RETURN

END

OM;

An interactive Delta session allows a compiler developer to explore potential algorithms

by !include'ing experimental software and watching its effects on actual programs. The

growing repertoire of transformers, instrumenters, program ana/yses and displays make the

interactive system a versatile laboratory for developing new compiler technology.

Using iSETL within Delta

Delta uses maps (and occasionally multi-valued maps) where other compilers would use

structured data. For instance, each FORTRAN compilation unit is a map. When we ask for

matmul("statements"), the result is a map from statement names onto other maps that

describe the attributes of each statement. For example the right hand side of the assignment
in statement $7 is:

> format_expr(matmul, matmul("statements") ("$7") ("rhs") , true) ;

"X+B (I ,K)*C (K, J)";

Another statement attribute is its FORTRAN type (spelled "st"). To explore the concept

of SETL maps, let's quickly build, and then display, a map from statement names directly

to their type:
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> strut_types:= {[s, attr("st")]

> strut_types("$I") ;

"DO" ;

: [s,attr] in matmul("statements")} ;

Here s and attr are iteration variables; they become bound to the elements of each ordered

pair in the statement map of matmul. Attr is the map of the attributes of statement

s; attr("st") is the one we we need. As s and attr iterate over all the statements,

{ [s 1 , attr I ("st")] .... } becomes a set of ordered pairs: a new mapping.

SETL can iterate over maps, sets, or tuples to form other maps, sets, or tuples, or to do

more traditional forms of data processing. In the following (truncated) example, the '>>'

prompt indicates that iSETL is waiting for more text in a syntactically incomplete construct

(in this case a conventional 'for' loop).

>

>> writeln s," is "

>> end for;

$12 is an ENDDO

S13 is a RETURN

S4 is an ASSIGNMENT

$2 is a DO

$1 is an ENTRY

for t=stmt_types(s) do

, if _(I) in "AEIOU" then "an "else "a "end if, t;

A SETL Extension: Ofieldname

Since we make such extensive use of strings in the domain of maps, we have extended iSETL

to streamline the syntax for mapping strings. The syntax resembles function composition:

©xxx©yyy [z] finds the location "xxx" in the map called "yyy" in the map stored in variable
z. This notation may be used for both storage to and retrieval from a hierarchical dataset.

> ©st©S4©statements [matmul] ;
"ASSIGNMENT";

> stmt_types:= {Is, ©st[attr]]

> ©$2 [simS_types] ;

"DO";

: Is, attr] in ©statements [matmul] } ;

3.3 Batch Processed Delta

iSETL is not the fastest implementation of SETL. Production runs of Delta on large programs

are not practical using the public domain interpreter that makes development so easy. To

overcome this problem, We acquired the SETL2 compiler from Courant Institute[Shy90] for

our workstations. In many cases, the compiled form of Delta has proven to be between 4

and 20 times faster than interactive iSETL interpretation. This enables us to process the

entire Perfect Benchmark suite through a Delta experiment as an overnight batch job.



iSETL ---*SETL2 conversion

The SETL2 compiler and iSETL interpreterdifferin many interestingrespects.We have

avoided substantialparts of both languagesin an attempt to keep a singlesourcecode for

Delta in a fairlystandard coredialect.The remaining differencesare bridged by writingin

a subsetof iSETL and convertingiSETL to SETL2 beforecompiling.The custom conversion

program writtenforthispurpose does an excellentjob of preservingindentation,vertical

alignment,comments and otherergonomic aspectsofthe code. This has leftopen the option

of convertingto SETL2 as the primary development language.

main := func(args);

This is the main program for Delta. 'Args' is a tuple containing the parameters passed on
the command line.

The iSETL interpreter is the 'main' program for an interactive session, but compiled

code needs a preprogrammed sequence of commands. So far each experimenter has written

a custom version of 'main' to carry out the desired tests. Some speculation has gone into

the design of an interactive front-end for compiled Delta, either an interface to a source

browser cum editor, or a SETL2 interpreter. While this issue is ultimately important in

building the Delta user base, it has so far taken a back seat to the construction of basic
transformation tools.

3.4 Version Control

The Delta program source resides in a production directory with a full audit trail, and

represents a useable release of the Delta system. This serves as a backbone for independent

development directories kept by several project programmers. The contents of a develop-

ment directory are overlayed on the current production directory to produce experimental

releases. In support of this, two scripts have been written (idelta and cdelta) to produce
the composition of a developer's private directory with the public production directory and

invoke either the iSETL interpreter or the SETL2 compiler on the result.

In addition special checkout and checkin scripts allow developers to move files between

their directories and the production directory. These scripts check for potential conflicts

between a known group of developers. They also maintain the audit trail and backup copies
of recent work.

3.5 Cross Reference

A system is only "open" insofar as its components are easy to locate, understand and

reuse. To enhance this quality of the Delta project, several tools have been added to the

SETL programming environment. Together they provide an interactive cross-reference to

the Delta project source files, fully integrated with the Gnu Emacs editor. The components
of this system are:

A SETL editing mode teaches Emacs enough about the lexical structure of SETL to

make its cursor motion, editing, and search commands recognize token boundaries.



A Tagsfile generator builds a catalogue oT source locations where SETL identifiers are

given new definitions. The tagsfile locates all statically recognizable definition sites using
the various forms of declaration and side-effects in the iSETL dialect used in the Delta source

code. A single tagsfile covers the whole Delta source. The file adheres to an Emacs format

previously used for Fortran, C, yacc, and Eye.

The Gnu Emacs Tags functions have been enhanced to support structured code walk-

through. While editing any part of the Delta source it is now easy to visit all definitions

or uses of any function, variable, or field name. A stack of return locations is kept so

that when the identifier's meaning has been sufficiently explored (or modified) the editing

session can return to the spot from which it first departed. The return stack includes

the remaining itinerary of any searches currently in progress. By directly modelling the

call/return discipline this package supports code walk-through and makes it easy to validate

changes to the code.

The Call Graph: One feature of an "open" system is the ability to replace lower level

components to change the detailed behavior of higher level actions. Of course, the replace-

ment must fill the needs of all its higher level callers. A call graph is a summary of

component interrelationships that can be used to locate call sites of a given component.

The tagsfile generator can also produce the call graph for a collection of iSETL modules.

Module relationships can also be abstracted. Observing and quantifying the cross-module
references has led to better choices about module boundaries in Delta.

4 Research Involvement

Subscript Classification (Paul Petersen)

One of the ways to improve data dependence information is to expand the applicability of

the dependence tests to a larger percentage of the potential dependences. Classifying the

sources of the unknown dependences is useful in determining where further effort may prove
beneficial.

One experiment examined all of the unknown dependence arcs in a benchmark suite and

categorizing them based on the type of coefficients of the loop indices. In each category the
precedence was (Array, Variant, Invariant, Numeric}. If two or more different classification

types were present in the same part of the subscript pair, the one with the higher precedence

was chosen. Each group of coefficients was subdivided into four categories based on the types

of their constant terms. By constant term we here mean any additive term not containing
an index variable of some enclosing loop. The following functions were added to the Delta
system:

classify_args_tree := func( pgm, ex, invar );

Return a string of 1 character labels which classify a subscript expression:
A=array
C=common variable

F =function

I =invariant

N=numeric

P =subroutine paramater

V=generlc variable
X=unknown construct

0 =zero

1 =unity
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sort_classify_set := func( res );

Return a sorted character string for the elements of set 'res'

classify_subscript := func( pgm, sl, expl, s2, exp2, invar );

classify__subscript_pair := func( pgm, sl, expl, s2, exp2, invar, ndirs );

Join the classification sets of each subscript and create a string tag to describe the

dependence pair; record this.

partiallyAinear := func(pgm, sl, expl, s2, exp2);

Determine if the dependence pair 'expl', 'exp2' are partially linear with all coefficients
of index variables constant.

Constant

Numeric

Invariant

Variant

Array

Numeric

15722

2908

29492

25240

Coefficient Type
Invariant Variant

1079 6

4940

3083 73

78

Array
499

36

425

The above table summarizes this analysis. In each category we collected a weighted
count of how many distinct dependence arcs could not be analyzed due to the lack of com-

piletime information characteristic of the category. The weighting factor equals the number

of feasible directions of the potential dependence. The table ranks the most important

sources of unknown dependence as:

1. variables that may be modified unpredictably during a loop,

2. subscripted subscripts,

3. loop invariants whose relation to the other terms in the subscript equations is not
known.

Compilation techniques such as interprocedural analysis, and advanced induction vari-

able recognition can help to reduce the first category. The problem with subscripted sub-

scripts is more challenging and is usually resolved by the user asserting that the subscripting

array is a permutation. Reducing the third category involves more complex analysis and
propagation of known relationships between invariant variables.

Efficacy of Dependence Tests (Paul Petersen)

Despite the popularity of approximate data dependence tests, there has been little empirical

analysis of their effectiveness. One research project[PP90] based on Delta analyzed some
a ppro_mate tests including tke GCD method and three variants of Banerjee's test.

* To evaluate the accuracy of these test, their outcomes were compared with an exact
integer programming method.

• To evaluate their effectiveness, the Pex'fect Benchmark suite programs were pro-

cessed, one subroutine at a time, through a Delta-based testbed system.
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Two experimentswererun usingdifferentseqflencesof dependencetests.Eachpotentially
conflictingsubscriptpair wasclassifiedasdescribedin 'SubscriptClassification'above.The
dependencetestsequenceappliesonly to subscriptequationswhosecoefficientsandconstant
terms are known at compiletime. A counterassociatedwith eachdependencetest was
incrementedwheneverthat testwasthe first to detectindependence.For Banerjee'stests
and the integerprogrammingtest the incrementwas1. The Constant, GCD, and integer
programming test counters were incremented by the number of distinct direction vectors

of the potential dependence since their results cover all dependences between the subscript

pair. Counting in this way, the weight of each potential dependence grows exponentially

with its level of nesting within DO loops.

Each of the two experiments consisted of two parts. The first part used the loop limits as

they appear in the source program. In this case, the Banerjee Rectangular and Trapezoidal

tests and the integer programming test do not apply to all loops since they require that

the limits be known at compiletime. For the second part we assumed an arbitrary constant

lower and upper loop limits and unit stride.

Did 'knowing' the loop bounds help much? The Banerjee Rectangular Test became more

effective by 8.64%, but at the same time the Banerjee Infinity Test is reduced by 8.37_ for

a net gain of 0.27%. The reordering of the dependence tests between runs also illustrated

that only 0.53_ of the analyzable dependences needed to know the upper bounds of loops

to resolve the equations. Bounds information may play a larger role with more advanced

induction recognition, but does not by itself improve dependence testing.

Exact Integer Programming proved only 0.25% more accurate than the approximate

tests across the whole benchmark. These results point to improving the quality of the

information available at a potential dependence site as the most significant research goal in
parallelizing _o RTRAN.

Synchronization (Sam Midkiff)

The Delta system is being used as the implementation tool for two experiments concern-

ing synchronization in shared memory multiprocessors. The first (partly implemented)

experiment compares the effectiveness of several code generation techniques for optimiz-

ing synchronization instructions[Jay88, Li85, MP87]. Each of the optimization methods

is being implemented in Delta. These 'synchronization minimizers' postprocess the result

of a simple DOACROSS pass[Cyt86]. DOACROSS loops are partially parallel: they satisfy

dependences between different iterations by synchronizing the parallel processors so that

conflicting memory uses occur in their original serial order. Code has been prepared to in-

sert POST/WAIT, and Alliant FX ADVANCE/AWAIT[All85] synchronization instructions into

concurrent loops. Statistics will be collected on how much redundant synchronization is left
after using each optimization method.

The second experiment is still in the planning stage. Its goal is to compare several
synchronization technologies:

• Post and Wait,

• Advance and Await, and

• Process-based synchronization[SY88].
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UsingDelta, FORTRAN programs will be anal_/zed to determine how many bits of synchro-

nization data are necessary to synchronize the programs using each of the methods. A

compiler generated timer will be used to simulate the potential speedup of each synchro-

nization method. This will let us study the tradeoffs between parallel speedup and the

complexity of synchronization hardware.

Critical Path Length (Paul Petersen)

Using the same powerful notion of instrumenting a program in order to simulate an alter-

native model of its execution, an experiment is nearing completion to measure a program's

execution time under ideal conditions. Like the MAXPAR simulation package[Che89], code

is being added to serial programs so that when executed, an assessment can be made of

their potential parallel execution times. So far the current work within Delta involved re-

producing some of the MAXPAR. results as cross-validation exercise. It is notable that the

instrumentation approach made possible by Delta significantly lowers the time needed to

acquire simulation data for a program.

The overall goal of the experiment is to characterize the performance of a particular

run of a given program if only it could be compiled with perfect knowledge of the control

and data dependences that arise during the run, and perfectly scheduled for execution

by a parallel processor with no resource constraints. The metric we are most interested in

initially is the operation count along the critical path of actual data and control dependences

encountered in the run. By studying the wide gap between theoretically ideal and practically

achievable compilation of actual application codes, this experiment can help set priorities

and expose unforseen opportunities for optimization efforts.

Work in Progress

Several lines of development are now under consideration or already underway:

Data structures are being designed to represent the parallelized program, without losing

the original sequential semantics needed for most analyses of the program.

The loop transformations on perfect loop nests should probably be extended and unified

into a single step transformer along the lines suggested by [Ban90] and [WLg0].

Modules will soon be needed to estimate the resources consumed by a transformed program

if it were to execute on a given machine architecture. Specifically memory references

should be counted and classified into different access patterns (e.g., vector write to

private memory, or synchronized reduction to shared memory).

Demonstrations

The Delta Program Manipulation system was demonstrated outside CSRD

• at the Fall '90 DARPA contractors meeting in Chapel Hill, NC.

• the Supercomputing '90 Conference in New York City.
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The audiences for these demonstrations were gently introduced to the whole topic of auto-

matic program restructuring. On display were both the Delta project source code as seen

through the interactive cross reference, and the interactive "try-it-and-see" interface. Loop

Distribution, Interchange, Concurrentizing, Vectorizing and Stripmining were illustrated.
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A The Delta System

The following is a collection of brief descriptions for the majority of the functions currently

available in Delta. Every function which can be invoked from the top level of Delta has

been included; this has tended to mix high level and low level functions. To relieve this, the

functions are classified by topic and some discussion has been added outside the framework

of the function-by-function documentation.

A.1 Fortran Programs as Data

The Scanner

The conversion FORTRAN'/7 _ Delta internal form is carried out by a separate program
called the 'scanner'. For each compilation unit in the FORTRAN source file, the scanner

produces one SETL map. To Delta, this map is the program. Its hierarchical structure

captures every significant semantic detail in the FORTRAN77 source code; allowing it to be

accessed based upon its meaning, rather than its lexical structure.

run_scanner := func( name, output );

Run the FORTRAN 77 to DELTA conversion program. Supply the input and output file
names to be used.

read_program := func(file_name);

Given a file name, return the Delta form of the first compilation unit found there.

For the remainder of this report and throughout the Delta source code, the variable name

'pgm' always refers to a program object of the type produced by 'read_program'.
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The ©expression Table

Delta represents FORTRAN expressions as labelled trees. The scanner produces a separate

table (©expressions) containing the parse tree of each expression in the program. The

trees are formed With explicit links (indices into ©expressions). Each tree node is a map

whose domain is a self-explanatory collection of field names, for example:

{["op"• "+"]• ["args", [123•124]]• ["type"• "INTEGER"]}.

In this example, the left argument to '+' is found at @expression[pgm] (123).

All expression nodes (except ',' operators) have a ©type field for the data type of the

operator's result. Currently the data frame size is kept only in the symbol table and not

propagated throughout the expression tree. All expression nodes have an ©op field. They

may also have fields called ©name, @label, ©value, or ©args. The following table de-

scribes how to interpret the ©op field.

Bop =

INTEGER_CONSTANT

REAL_CONSTANT

STRING_CONSTANT

LOGICAL_CONSTANT

HOLLERITH_CONSTANT

COMPLEX

ARRAY_REF

SUBSTRING

FUNCTION_CALL

INTRINSIC_CALL

RETURN*

©value = integer
©value = 'real number'

©value = 'characters'

©value = '. TRUE. ' or '. FALSE. '

©value = 'H length characters'

©args = [real, imaginary]

©args = [array ID, subscript list]

©args = [base variable reference, substring bounds]

©args = [function ID, parameter list]

©args = [intrinsic ID, parameter list]

©args = [label]

omitted

©label = 'statement name'

(in CALL parameter lists)

(in ENTRY parameter lists)
LABEL

IO*

ID @name = 'identifier'

annotations: ©substituted = equivalent expression

©possible_values = {integers}

©value = integer

u+ u- NOT ©args = [right]

EQ NE LT LE GT GE ©args = [left, right]

- / ** // ©args = [left, right]

+ * ©args = [argl, arg2, ... , argn]

OR AND EQV NEQV ©args = [argl, arg2, ... , argo]

DO ©args = [iolist, iterator] (for I/O implied DO loops only)

= ©args = [index ID, iteration space ](for implied DO iterators only)

• ©args = [argl, arg2, ... , argo] (for parameter lists, subscript

lists, io lists, implied DO iter-

ation spaces, ...)

(implied I/O unit or Format)

Explicit links from an expression to its subexpressions (©args) are very useful when a

modification must affect a subexpression without worrying about where it actually occurs

15



in the program (or how many occurrences may be sharing the subexpression structure).

repl_expr := func(pgm, e, old_value, new_value);

Return a new copy of 'pgm' in which all occurrences in expression 'e' of the subex-

pression 'old_value' are (destructively) replaced by unique copies of subexpression

'new_value'. The substitution is not recursive. It affects @substituted expressions,

but does not consider these when trying to match occurences of 'old_value'. It modifies

expression 'e', without garbage collecting the subexpressions 'old_value', or copying 'e'.

replace_variable_uses := func(pgm,stmt,prototype_map);

find_and_replace := func(pgm,e,prototype_map);

Return a new version of 'pgm' in which every ID node that is in the domain of 'proto-

type_map', and in expression 'e' (or in any expression of 'stmt') is replaced by a copy

of its image in 'prototype_map'. Identity maps are allowed.

This modification assumes there is no structure sharing and does not introduce any. IDs

in @substituted expressions are not affected. The @substituted, ©possible_value,

and other annotation fields of replaced nodes are preserved.

copy_expression := func(pgm,e);

Duplicate expression 'e'; return [new pgm, duplicate's index in ©expression].

make_expr_node := func(pgm, node_contents);

Return a new copy of 'pgm' and the index of a new expression therein which has the
given 'node_contents'.

But, explicit links and two-part results are a nuisance when the expression must be reor-

ganized, simplified, or repeatedly copied. For these actions, Delta expression transformers

first 'implode' an expression, which makes a copy independent of the ©expression table.

The imploded form, called an args_tree, replaces the pointers of the ©args field with the

actual nodes to which they pointed. Args_trees are easier to manipulate because SETL au-

tomatically garbage collects unused nodes, and copies modified ones, and because they can

be modified independent of any particular expression table. A reverse process ('exploding')

embeds an entirely new copy of the expression tree within a given ©expression table.

args_tree_implode_expression := func(pgm, e);

Extract an expression from the ©expression table of 'pgm'. Return a nested form of

the expression that is independent of the expression table.

explode_args_tree := func(pgm, ex);

Given a tree form expression, return a new copy of 'pgm' with the tree's components

inserted into the expression table. Return [pgm, the index of the root table entry].

form_args_tree := func( op(type, left, right );
Create a new 'tree' node.

SUB := func( left, right );

ADD := func( left, right );

MUL := func( left, right );
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DIV := func( left, right );
Createa newarithmetic nodein args_treeform.

COMMA := func( args);
Createa new',' nodefor parameterlists, etc.

ARRAY := func(name,args);
Createa newARRAY_REFnode.

list_subscripts := func(pgm,ref);
Returna tuple of the subscript expression indices from an ARRAY_REF.

CST := func( val );

NEd := func( ex );
Create a constant node whose type is determined by the type of the argument.

result_type := func(op,left_type,right-type);
Find the resulting type from the given binary operation.

IS_CST := func( ex );

IS_ZERO := func( ex );
Determine if the expression tree node is a constant value.

COPY_ID := func( id_name, id_type );

MAKE._ID := func( pgm, id_name );

Create an args_tree ID node.

IFIX := func( child );

DYADIC_FN := func( fn, left, right );

ASSOC_FN := func( fn, left, right );
Create a new INTRINSIC_CALL tree node.

maximize_args_tuple := func( tuple );
Given a tuple of (non-negative) trees return the tree representation of the MAX over

the list.

side_effect_free := func(pgm,e);

side_effect_free_args_tree := func(ex);

Return true if the given expression has no side-effects (or is 0M).

invariant_args_tree := func(ex, invar);
Given a side_effect__free_args_tree 'ex', return true if all its free variables are in 'invar'.

equal_expressions := func(pgm, p, q);

equal_args_tree := func( p, q );
Are the two given expressions/trees structurally equivalent?
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Algebraic simplification

simplify_args_tree := func( ex );

Return an arithmetically equivalent expression tree created by applying the following

simplification transformations in the correct order.

coef_args_tree := func( ex, id );

Return a numeric coefficient of the variable 'id' in expression 'ex'. If the coefficient is
not numeric then return OM.

all_variable_factors := rune( ex );

Returns the set of variables that are contained in the formula of expression tree 'ex'.

contains_set_args_tree := func( ex, var_list );

Returns the subset of variables in 'vat_list' that are contained in the top-level formula

of expression tree 'ex'.

extract_args_tree := func( ex, var_list );

Given 'ex' (a term or sum of terms) and a list of variable names, decompose 'ex' into

a mapping from the names onto either 0, or a term or sum of terms that mention the
variable.

variable_factors := rune( ex );
Returns the set of variables found as factors of 'ex'.

member_args_tree := rune( ex, v );

Given an tree 'ex' which is either an identifier 'v' or a multiple thereof, return a subtree
of 'ex' equal to 'v', else OM.

take_from_args_tree := func( ex, id );

Return the coefficients of the identifier 'id' from the multiplicative expression 'ex'.

combine_args_tree := func( ex );

Combine the coefficients of common terms and simplify.

dist_times..args_tree := func( args );

distribute_args_tree := func( ex );
Distribute '*' over '-{-'.

eval_func_args_tree := func( ex );
Return a simplified form of the INTRINSIC_CALL 'ex'.

flatten_args_tree := func( ex );

Flatten the tree structure around associative operators.

fold_args_tree := func( ex );

Combine constant arguments at every node. Use the @substituted annotations to

replace ID nodes. Replace subtraction (X-Y) by the addition of the negation (X+-I*Y).
Perform simple symbolic simplifications such as (I.X) _ X, and (0*X) _ 0.
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negate_args_tree := func( ex );

Given a tree that has recently been folded, multiply it by -1, in a way which leaves it

as fully folded.

The @statement table

ASSIGNMENT

©lhs I,@rhs I

DO ©follow 2

©index I

@in it_expr I,@I imit_expr I,©step_expr 1

IF, ELSEIF @expr I

@follow 2

ENDDO_ ENDTHEN

@follow 2

GOTO @t argot 2

ARITHMETIC-IF, COMPUTED_GOTO, ASSIGNED_GOTO

_expr I

@label_list 3 = [targetl 2, ...]

ASSIGN @lhs 1

@target 2

READ_ WRITE, PRINT, OPEN_ CLOSE,

REWIND, BACKSPACE, ENDFILE, INQUIRE

@s_control = {['KEYWORD', exprl], ... }
@io__list 1

STOP, PAUSE

@expr I 3

CALL s ENTRY

@routine = 'identifier'

@parameters 3

RETURN @expr I 3

LABEL _label ----integer i = indexintoexpressiontable.
2 = 'statement name'.

ENDIF 3 omitted in some cases.

Table 1: Fields in the Abstract Syntax Tree for each Statement type

The executable statements of a program are collected in the @statements ,nap. To

describe the many characteristics of the different FORTRAN statement types, each statement

is represented by a labelled map. The following subfields appear in every statement:

@st = 'statement type'

©next = 'name of the lexically next statement'

Table 1 lists all the FORTRAN77 statement types (@st) and the subfields used to capture
their syntax and sematics.
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Cross Reference, Flow Graph_ Loop Nesting

One field provided by the scanner for some statement types helps Delta deduce the flow of

control for compound constructs:

@follow = name of the 'other statement' in a compound construct

For instance, DO/ENDDO statement pairs point to each other via the @follow field. For

IF, ELSEIF and ELSE statements, @follow points to the matching ELSE, ELSEIF, or ENDIF.

Each IF_ ELSE and ELSEIF clause is ended by an ENDTHEN statement, whose @follow points

to the ENDIF that terminates the whole mess. All one-line logical rFs are converted to

IF/THEN/stmt/ENDTHEN/ENDIF sequences by the scanner. FORTRAN statement labels are

attached to separate statements, of type 'LABEL'. They are just placeholders and branch

targets.

All other fields are derived information, added by Delta during its program setup phase:

setup := func(pgm);

Return a copy of 'pgm' annotated with the derived fields.

@in_.refs = {indices of memory read expressions}

@out_.vefs = {indices of memory write expressions }

Each ©expression index in these sets is either an ID, an ARRAY_REF, or a SUBSTRING.
@in__refs and @out._refs do not account for the 'hidden' side-effects of function and sub-

routine calls. These annotations are handled by the routines:

build_in_out_terN := func(pgm,s);

list_refs := func(pgm,s);

Add (list) @in_.refs and ©out__refs expression sets to statement 's'.

add_refs_to_program := func(pgm);

Return a copy of 'pgm' where all statements have valid @in_refs and @out_refs fields.

@prev = 'name of the lexically previous statement'

Of course, the program counter does not always flow into a statement from its ©prey
statement, but so far every programmer who has written a low-level transformation has

erroneously assumed this at least once. These bugs are fixed, but this misconcept about
the @prey of a statement is subtle and insidious.

@outer = 'statement name' of the innermost enclosing DO loop.

@outer is omitted for statements outside of loops. The @outer field of a DO statement

names the next outer loop, not itself. The @outer field of an ENDDO names the matching
DO.

@successors = {'statement name's to which control may flow}

@predecessors = {'statement name's from which control may arrive}

For example, most DO statements have two elements in @successors: the first statement

in the body of the loop and the statement following the matching ENDDO.
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flow_successors:= func(pgm,stmt);
Return the setof statementnamesof 'pgm' to whichcontrolmayflow from 'stmt'.

flow_predecessors:= func(pgm,stmt);
Return the set of statementnamesof 'pgm' from whichcontrolmayflow into 'stmt'.
This requireso(#statements[pgm]) time to compute, so use the precomputed ©pre-

decessors field wherever possible.

A recurring issue in Delta is how much of the rich internal program representation must be

rebuilt from scratch after each transformation. The flow graph is one example where coding

complexity in the transformations must be traded off against the high cost of regenerating

(via add_flow_graph ) all the flow linkages in a program. The routine update__flow.Jnfo is one

answer to the trade off. It works on a bounded section of the program provided that any

explicit (i.e. non-default) links crossing the boundary are already correct. These conditions

can be met by most transformations without sacrificing clarity or code space.

add_flow_graph := func (pgm);

Return a copy of 'pgm' where each statement has been annotated with: ©successors,

©predecessors, and ©prey ignoring any existing values of those fields. The result

also includes a ©final_statement field that points to the lexically last statement.

update_flow.Jnfo := func (pgm, start_stmt, end_stmt);

Return a copy of 'pgm' where the ©predecessors, ©successors, and ©outer fields

have been updated over the given range of statements (connected by ©next). State-

ments that are properly linked successors of statements in this range have their pre-

decessor links updated to reflect changes within the range. The same is not true of

properly linked predecessors, so beware of ranges that follow ELSEs and ENDIFs.

A.2 Analysis and Transformation

Data Dependence

Each pair of conflicting storage references is represented by a directed arc in a data

dependence graph that indicates which reference is executed first in the original se-

quentiai program. The function dependence_graph() generates a complete graph for a

nest of loops and saves the result in a program annotation (©loop_info). From this,

dependence_loopAnfo() can derive a graph for any inner loop of the nest.

dependence_graph := func(pgm, doloop);

Build the dependence graph for the given loop. Return a set of tuples, whose elements

are dependences. Each dependence has the following contents, in order:

1. source statement

2. sink statement

3. source atom expression number

4. sink atom expression number

5. variable causing the dependence

6. direction vector
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7. dependencetype ('f'=flow, 'a'=anti,"o'=output)

derive_dependence := func(pgm,graph,s2);
Givenadependence'graph'forloopsl return thedependencegraphfor loop 's2' which
is a subloopof sl.

dependence_loop_info := func( pgm, sl );

Annotate the _loop_info database with the dependence graph for loop 'sl'. Compute

the graph from an enclosing loop or compute it directly for the outermost loop.

print_graph := func(pgm, 1, var_id);
Print out the dependence graph for a loop nicely. Uses the dependence graph in

©loop_info. If var_id is given, only print dependences for that variable.

dependences := func(pgm, sl, s2, doloop);
Build the dependences between the two given statements.

intersect := func(pgm, sl, s3_refs, s2, s2_refs, dirs, dep_type);
Intersect the two given reference lists and return a dependence for each intersection

and each element of the set of directions given.

plausible_directions := func(pgm, sl, s2, doloop);

Return a set of plausible direction vectors for statements $1 and $2. Each direction

vector is a tuple with the first element being the outermost common loop, and each

element being a string containing one or more of the characters '=', 'i', or _ .

ignore_non_equal := func( graph, ignore );

Ignore a set of variables for which non-'=' directions should be excluded from the

graph, e.g. localizable scalars.

The computation-intensive part of data dependence analysis decides whether a sys-

tem of equations (the equated subscripts of two array accesses) has an integer solution

in a given region of Z n (the iteration space of the surrounding loops). Integer Program-

ming techniques[SM89] can answer this question accurately, ttowever, faster approximate

techniques[Ban88] are thought to be more practical. An approximate test will sometimes

predict a non-existant solution to the system of equations, but conservative use of the test

results never leads to incorrect code, just to missed opportunities for optimization.

same_test := func(pgm, sl, el, s2, e2, dirs, dep_type);

dd_tests := func(pgm, sl, expl, s2, exp2, dirs, proto);

This routine is called only if the lexical names of refl and ref2 are identical. It returns

false if it can be shown that a dependence does not exist, or true otherwise.

nonlinear_test := rune( pgm, sl, expl, s2, exp2, dirs );

This test counts the number of non-linear potential dependences.

dd_tree_tests := fuac(pgm, sl, expl, s2, exp2, dir, proto);

Expand the direction-vector tree until a true/false result is found. If the result at the
current node is unspecified then recurse down.
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dd_simple_tests := func(pgm,sl, expl, s2,exp2,dirs, dir_count);
constant_dd_test := func( pgm,sl, expl, s2,exp2,dirs );
gcd_dd_test := func(pgm,sl, expl, s2,exp2,dirs );

Examinethe ©simple_dd_testsoptionsandinvokeeachroutine in sequenceuntil one
of the testseitherreturnstrue or false.

dd_complex_tests := func(pgm,sl, expl, s2,exp2,dir, dir_count);
infinity_dd_test := rune(pgm,sl, expl, s2,exp2,dir );
banerjee_dd_test := func(pgm,sl, expl, s2,exp2,dir );
trapazoid_dd_test := rune(pgm,sl, expl, s2,exp2,dir );
int_prog_dd_test := func(pgm,sl, expl, s2,exp2,dir );
display_dd_result := func(name,expl, exp2,dir );

Examinethe ©complex_dd_testsoptionsand invokeeachroutine in sequenceuntil
oneof the testseitherreturnstrue or false.

jayasimha_test := rune(pgm,sl, expl, s2,exp2,dirs );
This test is to locatesubscriptpairsin whichall coefficientsareintegral,but someare
different.

exact_subscript_test := func(pgm,sl, expl, s2,exp2,directions);
Invokethe exactlinearprogrammingdependencetest

trapazoid_direction_test := func(pgm,sl, exl, s2,ex2,dirs);
trapazoid_function_bounds := func(pgm,sl, exl);

Find the function boundsfor expression'exl' at statements'sl'. The valueOM is
returneduponerror.

banerjee_trapazoid := func(pgm,sl, exl, s2,ex2);
Determinethe function boundsfor two expressions'exl' and 'ex2' in statements'sl'
and 's2'. If the constantterm noesnot lie betweenthe computedbound then no
dependenceis possible.

banerjee_quadrant := func(pgm,sl, exl, s2,ex2,directions);
Banerjee_quadrantis calledif both subscriptexpressionsarelinear functionsof induc-
tion variables.This routinewill only work properlywhenall coeficientsare integers,
andthe loophasbeennormalized.

infinity_test := func(pgm,sl, exl, s2,ex2,directions);
Theinfinity_testis calledif bothsubscriptexpressionsarelinearfunctionsof induction
variables.This routinewill only workproperlywhenall coeficientsareintegers,and
thestepon the loopsareall positive.

banerjee_inequality := func(pgm,sl, exl, s2,ex2,directions);
Banerjee_inequalityis calledif bothsubscriptexpressionsarelinearfunctionsof induc-
tion variables.This routinewill only workproperlywhenall coeficientsare integers,
andall looplimits areintegers.It alsoassumesthat the loophasbeennormalizedand
hasa stepof 1.
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In posing the integer programming problem, unknowns which are invariant in some

surrounding loops are symbolically cancelled. The function cancel_coramon_terms(exl,

ex2, yarn) eliminates variables that are additive in both subscript expressions (exl, ex2)

and also belong to the invariant set (vars) of a given loop. The particular loop to use is

the outermost one in which the conflicting references may occur in different iterations.

select_invariant := rune( pgm, common, dir );

select_invariant_dirs := func( pgm, common, dirs );
Select the set of invariant variables based on the current direction vector. Given a set

of direction vectors, return the most restrictive set of invariant variables.

cancel_common_terms := func( exl, ex2, invar );

Given two expressions 'exl' and 'ex2', return a tuple of the expressions with all common
additive terms in 'invar' canceled.

unknown_test := func(pgm, sl, expl, s2, exp2, dirs, dir_count);

Test the subscript pair to see if any direction vector in 'dirs' supports a large enough
invariant set to break an 'unknown' test result.

symbolic._lower_bound := rune( pgm, s, id, indx );

symbolic_upper_bound := func( pgm, s, id, indx );

Given Doloop 's' in 'pgm' and the indices 'indx' of the enclosing Doloops, return a map

representing a linear function of indx that computes either the lower/upper bound of

s, or, if 'id' is set, id - bound. If the function is nonlinear and the ©loop_info contains

a guess of s's bound, use the guess in place of the actual bound.

A.3 Statement Manipulation

list_stmts := func(pgm);

Return a list of all of the statements in the program

stmts_of_type := func(pgm,st);

Return a tuple (ordered by the ©next links) of all statements of the given types; 'st'
can be either a string or a set of strings.

reorder_statements := func(pgm,start_block, end_block, new_order);
Given a range of statements and a new order, rearrange the @next and ©prey links to

put them in that order. Don't update the flow graph or ©outer fields.

connect_two_statements := func(pgm,first_stmt,second_stmt);

Set the ©next and ©prey fields of two statements to point to each other.

delete_stmt := func(pgm,s);_

Disconnect a statement from the lexical and flow graphs of the program. The statement

remains in the statement table; its (invalid) links are unchanged. This is not sufficient

to delete pieces of a compound construct (DO, IF, GOTO/LABEL, ...)

add_after_stmt := func(pgm, preceding_stmt, new_strut);
Insert a statement after another one.
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make_assignment_stmt := func(pgm, p, q);"

Create an assignment statement 'p = q'. Don't link it into the program.

Procedure CALLs

The following utilities are concerned with CALL statements and the various forms of entry

points into FORTRAN compilation units. The most significant capability of Delta with

respect to interprocedural analysis is its inline expansion of subroutine calls. Given a

program block, a subroutine, and a statement in the program block that calls the subroutine,

the inline expander replaces the call statement with the body of the called subroutine. It

changes the variable names used by the subroutine, so that the expanded program block

is functionally equivalent to the origrinal program block. This facility is expected to prove

useful in parallelizing loops where the presence of a subroutine call inhibits parallelization.

At a higher level of abstraction, it eliminates some of the need for interprocedural analysis

by destroying subroutine calls.

make_call2tmt := func(pgm, name, p);

Create a subroutine call statement, where p is a

llnk it into the program.

',' node for the parameters. Don't

call_stmts := func(pgm);

Builds a map from routine names onto non-empty sets of statements where they are
CALLed.

function_calls := func(pgm);

Find all function calls and return a mapping pointing to the statements wherein they
Occur.

inline_expand := func(pgml, call_stmt, pgm2, called_routine);

Expand the subroutine CALL at call_stmt in pgml using the body of the called_routine

(a named entry point) from pgm2.

routine_name := func(pgm);

Find the routine name of the lexically first ENTRY point, if any if none, return OM.
Let the caller convert it to 'MAIN' or whatever!

entry_points := func(pgm);

Find all ENTRY points of a given program.
ENTRY statement tag for that name.

Return a map from routine name to

float_entry_points := func(pgm);

Move all ENTRY statements to the top of the routine. Follow each one with a

GOTO/LABEL pair to its original location. This produces a unique empty section of

code following each entry point. Le_cal ordering of ENTRYs is preserved, therefore

the routine name is not changed.

move_ENTRY_after := func(pgm, dest, entry);

Move a statement of type ENTRY to after dest.
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Branching and Conditionals

make_goto_stmt := func(pgm, st);
Create an UNCONDITIONAL_GOTO statement that branches to statement st. Don't

link it into the program.

makeJabel_stmt := func(pgm, lb);
Create a LABEL statement with 1abel lb. Don't link it into the program.

numeric_labels_used_in := func(pgm);

Find all numeric labels used in pgm.

delete_trivial_gotos := func (pgm);

Remove UNCONDITIONAL_GOTOs that go to the next statement. Remove the

LABEL there too if possible.

remove_gotos := func(pgm);

Change any eligible IF-GOTO statements in the program to block IFs. Currently

using an ad hoc approach; future home of full flow normalization[Amm90].

convert_arithmetic_if := func(pgm,stmts,s);

Try to convert an arithmetic IF into an IF-GOTO-ENDTHEN-ENDIF. This is possible

if two of the target labels are the same, and if one of the targets is the following

statement. Stmts is the ©statements section of pgm separated out for convenience.

Return the modified program and statements and the FIRST statement in the resulting

sequence of statements after converting the IF if successful. Otherwise,just return the

arguments unchanged.

invert_if_condition := func(pgm,if_stmt);
Invert the condition of the IF statement in the indicated statement.

split__ELSEIF := func (pgm, old_elseif);
Convert an ELSE IF clause into the ELSE clause of a new outer IF statement.

delete_IF := func( pgm, IF_stmt);

Remove an IF/ELSE/ENDIF structure. Connect the THEN and ELSE clauses as

in-line code. Caller is responsible for preserving program semantics!

DO Loops

list_do_loops := func(pgm);

Return a tuple of [do-start, do-end] pairs

display_do_loops := func(pg_m,extra_stuff);

Write out the DO and ENDDO statements in the program

listJoop_body := func(pgm,do_stmt);

Return a tuple listing the statements in the given DO loop
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enclosingloops := func(pgm,s);
Build a tuple giving theloopsenclosingthegivenstatement,with theoutermostloop
first and innermostlast. Return an empty tuple if thereare no loopsaround this
statement.

commonAoops := func(pgm,sl,s2);
Return a tuple of all DO loopsthat enclosebothstatements

loop_index := func(pgm,1);
Return the nameof the indexvariablefor thegivenloop.

delete_loop := func(pgm,do_stmt);
Removea DO loop from arounda set of statements. Reconnectthe lexical and
flow graphsof the program. The DO and ENDDO statementsaredeletedfrom the
©statementand@loop_info tables. The ©outer fields are updated.

make_doAoop := func (pgm, after, index, init, limit, step, before);
Make a new DO/ENDDO statement pair. Put the DO after 'after', giving it the index

variable 'index' and bounds formed from the args_trees 'init', 'limit', and 'step'. Put

the ENDDO before 'before'. Statements between 'after' and 'before' (if any) form the

body of the loop. Their _outer field is updated, but their ©loop_info is not (yet)
affected.

initializeAocal_variable := func(pgm, s, v, expr);

Create a statement or loop to initialize a local variable

A.4 Preconditioning

Control Flow

control__flow_graph := func( pgm, stmtJist );

Return a control flow graph for the list of statements contained in stmt_llst. The value

is a mapping of statements onto a set of arcs.

dominates := func( idom, sl, s2 );

Return true iff 'sl' dominates 's2'.

allAmmediate_dominators := func( pgm );

allAmmediate_postdominators := func( pgm );

Returns a mapping from every statement in the program to its immediate (post)dom-
inator statement.

loop_immediate_dominators := func( pgm, doloop );

loop_immediate_postdominators := func( pgm, doloop );

Returns a mapping from every statement in doloop to its immediate (post)dominator
statement.

immediate_dominators := func( stmtJist, CFG, R_CFG );
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immediate_postdominators := func( stmt_list,CFG,R_CFG);
Returnsa mappingfrom statementsin 'stmt_list'to their immediatedominatorstate-
ment: the closeststatementthat appearsoneverypath from the entry to the state-
ment. Tarjan'sflowdominatoralgorithmis used[LT79].
In the map,idom(first stmt_list)= first stmt_list is added to make the resulting map

everywhere defined.

dominance_frontier := func( idom, root, CFG );

control_dependence := rune( pgm, stmt_list );

Given an immediate dominator map and the 'root' of its corresponding control flow

graph, (or a 'pgm' from which a postdominator map can be generated for a particular

'stmt_list') this returns a map from each statement X to all statements Y such that X

(post)dominates a (successor) predecessor of Y but does not strictly (post)dominate

Y. This algorithm forms part of PTRAN's Static Single Assignment Form conversion

described in [CFR+88].

invert_graph := func( graph );

Invert a graph represented as a mapping of items onto sets of items.

strongly_connected_components := func(stmts,graph,1);

Given a set of statements and a graph connecting them, return the strongly-connected
components as a set of disjoint subsets of 'stmts'. For now 'graph' is represented as

a set of ordered pairs representing the directed edges between statements. Tarjan's

algorithm [Eve] is used.

build_pi_blocks := func(pgm, 1);

Build the strongly-connected components (aka pi-blocks) for loop 'l'.

topologically_sort := func(nodes,edges);

Given node and edge sets of a graph, return a tuple of nodes in an arbitrary total

order which satisfies the partial ordering induced by the edge relation. The edge set

must not have any cycles involving members of 'nodes'.

build_all_prior_sets := func(pgm);

Add prior sets as ©prior to each DO statement in the program

new_prior := func(pgm, sl, s2, 1);

Do the prior test for two statements with respect to a loop. i.e. return true if there

is a flow path from the first statement to the second within a single iteration of the

loop. Assume that the prior sets are attached to the loop header.

Red ucing irrelevance

dead_code_elimination := func(pgm);

Eliminate dead (i.e. unused) assignment statements in 'pgm'. Remove IFs and DOs

that become empty along the way.
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delete__ELSEIF:= func(pgm,ELSEIF_stmt);
Deadcoderemovalof ENDTHEN / ELSEIF pairs. Assumes ELSEIF does not con-

trol any meaningful statements. Does not remove any ELSE parts of the ELSEIF

construction. Semantically too wierd for any use besides deadcode elimination.

unreachable_code_elimination := func(pgm);
Delete statements that cannot be reached from the ©initial_statement via ©suc-

cessor links and that are not needed for the lexical integrity of the program. Also

delete statements disconnected from the lexical graph. Assumes that the reachable set

is a subset of the statements connected by ©next and ©prey links in the lexical graph.

Assumes (ANSI F77) that there are no branches into DO loops, or into IF, ELSE, or
ELSEIF blocks.

Induction

induction_variables := func(pgm, doloop);

Find induction variables in a loop. Replace uses of the variable with the equivalent

value expressed as a tuple of expressions, where the first element is the constant term,

the second the increment due to the inner loop, the next the increment due to the

next inner loop, etc.

test_for_increment := func(pgm,s,loop_invariants);

See if the given statement is an increment. If it is, return a tuple with the the lhs
variable name and the set of rhs terms other than the lhs variable. Return OM if not

an increment.

not_always_executed := func(pgm, stmt, loop_body);

Return TRUE if the given statement isn't executed exactly once every time through

the given loop.

substitute_induction_variables := func(pgm, 1);
Given a set of induction variable assignments for a loop, substitute uses of the variables

in loop 1 with the equivalent value in terms of the (normalized) loop index variable.

Return the modified program and a count of variables removed.

substitute_all__induction_variables := func(pgm);

Call substitute_induction_variables on each loop of the program.

induction_loop_info := rune( pgm, sl );

Annotate the _loopJnfo database with the induction variables for loop 'sl'.

Invariance

invariant_expression := func(pgm, e, invariants);

Return true if all of the names that appear in the given expression are in the given
set. The expression is then invariant iff all the function calls and intrinsic calls are

deterministic (checks for this not included).

loop_invariant_variables := func(pgm,l);

Return a set of variable names that are not modified in the given loop
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invariant_loop_info := func(pgm,sl );
Annotatethe @loop_infodatabasewith the invariantvariablesfor loop 'sl'.

Canonical iteration space

normalize_loop := func(pgm,doloop);
To normalizea loop, subtract the lower-boundfrom the upper and lower bounds,
renamethe loop indexvariableto anewname,andsubstall of the occurencesof the
loop index variableby the newformula. Locateall exits from the loop, and restore
theindex value.

rename_do_loop_index := func(pgm,doloop,index,repl);
Find all exit pathsfrom loop 'doloop' and make sure that the line index = new_value
is added to each.

normalize_allAoops := func(pgm);

Normalize all of the loops in the program

Forward substitution

propagate_constants := func(pgm);

ok_to_substitute := func(pgm, e, OK_names);

Do forward substitution of scalar variables throughout pgm. Attach a subtree to each

substitutable expression giving either an equivalent expression tree (in @substituted)

or a set of possible constant values (in @possible_values). Expressions are.substituted
only if they are free of function calls and array references.

evaluate_scalar_assignment := func(pgm,expr, stmt_IN, DEF_values);
Try to evaluate the expression given the scalar definitions that reach it. If a non-

constant value reaches any of the rhs exprs, return OM, otherwise return the set of

possible values to be attached to the statement. Return an empty set if evaluation

will always be impossible. DEF_values is a mapping of DEFs to the set of values for
that def.

Alternative: use a simple evaluator that takes a binding environment as parameter,

collect possible values from the evaluation in all possible binding combinations for the
expression's input variables.

evaluate_integer_expression := func(pgm,e);

Try to evaluate an expression to an integer value. Return OM if it is impossible.

clean_expressions := func(pgm);

Remove the propagated constants and expressions from pgm.

Scalar expansion

localizable_scalars := func(pgm,1);

Compute the set of scalars that could be localized to the given loop.
in_refs and out_refs are correct.

Assumes that
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localizable_loop_info := func( pgm,sl );
Annotatethe ¢loop_info databasewith the localizablevariablesfor loop 'sl'.

expand.scalars := func(pgm,names,enclosing_loops);
Expandeachof a setof scalarsinto arrays. Add onedimensionfor eachloop in the
enclosingAoopstuple (whichis orderedwith theoutermostloop to beexpandedfirst).
Dimensionit as (*,* ..... *) (fill in the boundslater). Assumethat the loopsare
normalized,andusethe inner loop asthe leftmostsubscript.

A.5 Restructuring

Loop interchange

permutation_to..swaps := func(permutation);

Given a tuple representing a permutation, e.g. [3,1,2], return a tuple of ordered pairs

giving exchanges of adjacent elements to make in order to change [1,2,3] into that
permutation. For [3,1,2], one possible sequence of exchanges is [[2,3], [1,2]].

The strategy taken is to swap the element that goes to the last position into place (i.e.

3 in the example is swapped with 2, then 2 is swapped with 1 to bring it to its final

position), then repeat as necessary for the second-to-last, ... Note that this is o(n2),

llke a bubble sort (which it strongly resembles).

permute._loops := func(pgm, old_order, new_order);

Given an old outside-in order for a set of perfectly nested loops and a new order, return

a copy of 'pgm' in which the loop nest is permuted into the new order.

interchangeAoops := func(pgm,sl,s2);

Return a copy of 'pgm' in which the perfectly-nested loops 'sl' and 's2' are inter-

changed.

legal_to_interchange := func(pgm,outer_do,inner_do);

Test whether interchanging the given loops would violate a data or control dependence.

interchange := func(pgm, ll, 12);

Cover function for interchangeAoops that first checks to see if it is legal to interchange
the loops.

Loop distribution

distributeAoop := func(pgm,l,break_after);
Break a loop 'l' in two after one of its statements _break_after'.

smashAoop := func(pgm,doloop);

Build the piblocks for a loop, then use them to smash the loops into tiny pieces.

Start by smashing the inner loops recursively (therefore this is inside-out distribution).

Return the modified program and the last resulting ENDDO.

31



Stripmining[Lov77]

strip_vertical_inner := func(pgm, DO_loop, stripsize);

strip_vertical_outer := func(pgm, DOJoop, stripsize);

strip_horizontal_inner := func(pgm, DO_loop, stripsize);

strip_horizontal_outer := func(pgm, DO_loop, stripsize);

stripmine := func(pgm, DO_loop, length);

Return a version of 'pgm' and the statement tags of two perfectly nested loops which

together control the iteration space of the given 'DOJOOp'. The iteration space is split

into strips of a positive integer size computable by the expression 'stripsize' (or given

by the constant 'length'). The bounds expressions of 'DOJoop' should be invariant in

the loop.

This technique is in widespread use by vectorizers, concurrentizers, and ordinary compilers

that attempt to improve data locality. For example in strip_vertical_inner, the inner loop

carries the original loop's index variable over 'strips' of a given or computable size using
the same stride as the original loop. The new outer loop schedules enough strips to cover

the original iteration space.

Vectorizing and Concurrentizing

tiny_vectorizer := func(pgm);

Return a version of 'pgm' in which loops are marked as DOALL or SUM based on a

small amount of dependence pattern recognition.

trivial_subscript_test := func(pgm);

Look at all of the dependences in ©loop_info [pun]. Eliminate any which have: A '"

in some direction vector position. A source and sink subscripted by the index for the

corresponding loop. Return the reduced dependence graph.

trivially_parallel := func(pgm,1);

Return true if there are no non-'=' dependence arcs in the graph for this loop.

trivial_summation := func(pgm,1);

See if this loop is a sum of trivial form, e.g. scalar = scalar + 'invariant stuff'

Instrumentation

instrument_all_outerJoops := func( pgm );

Return a copy of 'pgm' in which each outermost loop is bracketted by a pair of sub-

routine calls that can collect and identify timings of individual loop nests.

instrument_do_loop := fun_( pgm, doloop );

Return a copy of 'pgm' in which the 'doloop' is bracketted by calls to DOSENTRY and

DOSEXIT with the statement tag of tim loop as their argument.

critlcal_path_program := func( pgm );

Return a version of 'pgm' instrumented so that executing it serially will measure the

longest critical path of data or control dependence for that program run.
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Output

write_program := func(pgm);

display_program := func(pgm);

wrlte_program_to_file :- func(pgm, fname);

wrlte_program_fd := func(pgm, all.info, fd);

Write out a program unit with the given name.

write_stmt_string := func(string, indent, heading_width, fd);

Write out a string as a statement with indentation level 'indent' and with continuation

lines preceded by 'headlng_width' spaces. Analyze while printing to see if continuation

lines can be indented safely. Indent level should not include the initial 6 columns, also,
the initial llne will not have indentation or headings printed by this program; that is

the responsibility of the caller.

type_decls := func(pgm, fd);

parameter_decls := func(pgm, fd);

format_dim := func(pgm, dim);

array_decls := func(pgm, fd);

common_decls := func(pgm, fd);

equivalence_decls := func(pgm, fd);

data_decls := func(pgm, fd);

save_decls := func(pgm, fd);

external_decls := func(pgm, fd);
Produce the declarative statements that establish the evironment for 'pgm's execution.

FORTRAN77 output syntax only!

write_stmt := func(pgm, stmt, allinfo, marking);

write_stmt_fd := func(pgm, stmt, all_info, marking, fd);
Write out executable statement 'stmt'. Return the next statement, or OM if none.

Print extra stuff if 'all_info' is set, prepend 'marking'.

write_all_struts := func(pgm, initial, final, allinfo, fd);

Write out al] the statements in the given set that are in the chain starting with 'initial',

connected by ©next, and ending with 'final'.

write_do_loop := func(pgm, do_stmt);

write_do_loop_fd := func(pgm, do_stmt, fd);

Write out one do loop.

statement_label_value := func(pgm,s);

Return a string form of the numeric statement label for statement 's'.

write_format_struts := func(pgm, fd);

Write out any format statements in the program.

format_expr := func(pgm, e, give_values);
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write_expr := func(pgm,e, give_values);
writeln_expr := func(pgm,e,give_values);

Convertanexpressiontreeinto astringfor output. Print out anexpressiontree. Write
out an expressionlabelledby its numberfollowedby a newline.

new_identifier := func(pgm, id);

create_identifier := func(pgm, base_id, id_type);

create_simple_variable := func( pgm, name, type, size );

new_critical_identifier := func(pgm, id);

make_label := func(prefix);

Serve different needs for the production of new names for compiler generated compo-

nents of the program.

A.6 SETL Utilities

integer_to_string := rune(n);

Return the character string representation of the integer 'n'.

string_to_integer := rune(s);

Return the character string representation of the integer 'n'.

misc_to_string := func(int_or_string);

Given a parameter that is an integer or a string, return the string equivalent.

pad_string := func(s,length);

left_pad_string := func(s,length);

Given a string and a minimum length, pad it with blanks to that length if necessary.

compact_object := furtc(obj);

Returns its argument with structure sharing among leaf nodes.

negp := rune( x );

posp := func( x );

Return the negative/positive part of an integer.

iNEG := rune( a );

iADD := func( a, b );

iSUB := rune( a, b );

iMUL := func( a, b );

Operate on the arguments taking care of infinities and OM.

gcd := func( a, b );

gcdn := func( list );

Compute the GCD of a pair (list) of integers.

divides := func( a, b );
Determine if a divides b.
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between := func(a,b, c);
Determineif therelation [ a i= b i= c ] is true.

tuple_reverse := func(x );
Reversethe orderof elementsin a tuple.

tupleAndex := func( x, T );
Return theindexof the first occurenceof _x'in tuple _T',or OM if none.

laminate := func(listl, list2);
Laminatetwo tuplesinto a tuple of tuples.

split_tuple := func( tpl, test );
Split a tuple into two parts,onewhichpassesthe test andthe other not.

list_strings := func(separator,strings);
Concatenatea setor tuple of strings,separatethem with 'separator'.

commas_between := func(list);

Concatenate strings in list, separating them by _, '

limit_tuple_length := func( list, limit );

Given a tuple of strings return a tuple of tuples which are all less than the ]imit when

separated by commas.
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